8,015 research outputs found

    Faint, moving objects in the Hubble Deep Field: components of the dark halo?

    Get PDF
    The deepest optical image of the sky, the Hubble Deep Field (HDF), obtained with the Hubble Space Telescope (HST) in December 1995, has been compared to a similar image taken in December 1997. Two very faint, blue, isolated and unresolved objects are found to display a substantial apparent proper motion, 23+/-5 mas/yr and 26+/-5 mas/yr; a further three objects at the detection limit of the second epoch observations may also be moving. Galactic structure models predict a general absence of stars in the color-magnitude range in which these objects are found. However, these observations are consistent with recently-developed models of old white dwarfs with hydrogen atmospheres, whose color, contrary to previous expectations, has been shown to be blue. If these apparently moving objects are indeed old white dwarfs with hydrogen atmospheres and masses near 0.5 M_Sun, they have ages of approximately 12 Gyr, and a local mass density that is sufficient, within the large uncertainties arising from the small size of the sample, to account for the entire missing Galactic dynamical mass.Comment: 6 pages, using emulateapj, including 2 colour figures, accepted for publication in ApJ Letter

    Coupling Between Thermal Oscillations in the Surface of a Micro-Cylinder and Vortex Shedding

    Get PDF
    his article studies the coupling between prescribed thermal oscillations in the surface of a micro-cylinder and vortex shedding. We deal with the unsteady, laminar, compressible flow regime where the aerodynamics forces have a periodic behavior. It is shown that appropriate spatial and time-dependent temperature oscillations on the surface of the micro-cylinder create a resonance that controls the amplitude and frequency of both lift and drag coefficients. In practice, what we study is a mechanism to modulate the amplitude and frequency of mechanical loads of aerodynamics origin in a micro-structure by using surface temperature fluctuations as the control parameter

    Spatial-distribution of recombination centers in gaaste - effects of the doping level

    Get PDF
    The distribution in liquid-encapsulated-Czochralski (LEC) GaAs:Te wafers of point and complex defects has been investigated together with their influence on the minority-carrier diffusion length L. Three wafers with different Te-doping concentration (2.2 X 10(17), 4.5 X 10(17), and 1.5 X 10(18) cm-3) have been studied by means of the electron-beam-induced-current (EBIC) mode of scanning electron microscopy and of the surface photovoltage (SPV) method. The morphology and electrical activity of the defects observed across each wafer have been correlated to the formation and distribution of deep electronic levels, which are significantly affected by the tellurium concentration. The diffusion length has been found to be mainly controlled by deep levels associated with dislocations. EBIC localized measurements of L and of the net ionized free-carrier concentration provide evidence for the influence of Te concentration on impurity segregation at complex defects

    The effect of wave conditions and surfer ability on performance and the physiological response of recreational surfers.

    Get PDF
    This study investigated the effects of wave conditions on performance and the physiological responses of surfers. After institutional ethical approval 39 recreational surfers participated in 60 surfing sessions where performance and physiological response were measured using global positioning system (GPS) heart rate monitors. Using GPS, the percentage time spent in surfing activity categories was on average 41.6, 47.0, 8.1, and 3.1% for waiting, paddling, riding, and miscellaneous activities, respectively. Ability level of the surfers, wave size, and wave period are significantly associated with the physiological, ride, and performance parameters during surfing. As the ability level of the surfers increases there is a reduction in the relative exercise intensity (e.g., average heart rate as a percentage of laboratory maximum, rpartial = -0.412, p < 0.01) which is in contrast to increases in performance parameters (e.g., maximum ride speed (0.454, p < 0.01). As the wave size increased there were reductions in physiological demand (e.g., total energy expenditure rpartial = -0.351, p ≤ 0.05) but increases in ride speed and distance measures (e.g., the maximum ride speed, 0.454, p < 0.01). As the wave period increased there were increases in intensity (e.g., average heart rate as a percentage of laboratory maximum, rp = 0.490, p < 0.01) and increases in ride speed and distance measures (e.g., the maximum ride speed, rpartial = 0.371, p < 0.01). This original study is the first to show that wave parameters and surfer ability are significantly associated with the physiological response and performance characteristics of surfing

    Metallicity inhomogeneities in local star-forming galaxies as sign of recent metal-poor gas accretion

    Get PDF
    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show 0.5 dex metallicity decrements in inner regions with enhanced star-formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sanchez Almeida et al. (2013) and interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications: (1) it proves that galaxies other than the local tadpoles present the same unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star-formation activity in the local Universe. We argue that the star-formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, are naturally interpreted as side effects of pristine gas infall. Alternatives to the metal poor gas accretion are examined too.Comment: Accepted for publication in ApJ. 10 pages. 5 Fig

    Magnetotunneling Between Two-dimensional Electron Gases in InAs-AlSb-GaSb Heterostructures

    Get PDF
    We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This result is explained quantitatively with a model of the conductance in which the 2D gases have different densities and can tunnel between Landau levels with different quantum indices. When the epitaxial growth conditions of the interfaces are optimized, the zero-bias magnetoconductance shows a single set of oscillations, thus proving that the asymmetry between the two electron gases can be eliminated.Comment: RevTeX format including 4 figures; submit for publicatio

    Galactic Kinematics Towards the South Galactic Pole. First Results from the Yale-San Juan Southern Proper-Motion Program

    Get PDF
    The predictions from a Galactic Structure and Kinematic model code are compared to the color counts and absolute proper-motions derived from the Southern Proper-Motion survey covering more than 700 deg2\deg^2 toward the South Galactic Pole in the range 9<BJ199 < B_{\rm J} \le 19. The theoretical assumptions and associated computational procedures, the geometry for the kinematic model, and the adopted parameters are presented in detail and compared to other Galactic Kinematic models of its kind. The data to which the model is compared consists of more than 30,000 randomly selected stars, and it is best fit by models with a solar peculiar motion of +5 km s1^{-1} in the V-component (pointing in the direction of Galactic rotation), a large LSR speed of 270 km s1^{-1}, and a (disk) velocity ellipsoid that always points towards the Galactic center. The absolute proper-motions in the U-component indicate a solar peculiar motion of 11.0±1.511.0 \pm 1.5 km s1^{-1}, with no need for a local expansion or contraction term. The fainter absolute motions show an indication that the thick-disk must exhibit a rather steep velocity gradient of about -36 km s1^{-1} kpc1^{-1} with respect to the LSR. We are not able to set constraints on the overall rotation for the halo, nor on the thick-disk or halo velocity dispersions. Some substructure in the U & V proper-motions could be present in the brighter bins 10<BJ<1310 < B_{\rm J} < 13, and it might be indicative of (disk) moving groups.Comment: 24 double-column pages, 12 tables, AAS Latex macros v4.0, 19 B&W figures, 1 color figure. Accepted for publication on The Astronomical Journa

    Diffuse Gamma-ray Emission from the Galactic Center - A Multiple Energy Injection Model

    Get PDF
    We suggest that the energy source of the observed diffuse gamma-ray emission from the direction of the Galactic center is the Galactic black hole Sgr A*, which becomes active when a star is captured at a rate of 105\sim 10^{-5} yr^{-1}. Subsequently the star is tidally disrupted and its matter is accreted into the black hole. During the active phase relativistic protons with a characteristic energy 6×1052\sim 6\times 10^{52} erg per capture are ejected. Over 90% of these relativistic protons disappear due to proton-proton collisions on a timescale τpp104\tau_{pp} \sim 10^4 years in the small central bulge region with radius 50\sim 50 pc within Sgr A*, where the density is 103\ge 10^3 cm^{-3}. The gamma-ray intensity, which results from the decay of neutral pions produced by proton-proton collisions, decreases according to et/τppe^{-t/\tau_{pp}}, where t is the time after last stellar capture. Less than 5% of relativistic protons escaped from the central bulge region can survive and maintain their energy for >10^7 years due to much lower gas density outside, where the gas density can drop to 1\sim 1 cm3^{-3}. They can diffuse to a 500\sim 500 pc region before disappearing due to proton-proton collisions. The observed diffuse GeV gamma-rays resulting from the decay of neutral pions produced via collision between these escaped protons and the gas in this region is expected to be insensitive to time in the multi-injection model with the characteristic injection rate of 10^{-5} yr^{-1}. Our model calculated GeV and 511 keV gamma-ray intensities are consistent with the observed results of EGRET and INTEGRAL, however, our calculated inflight annihilation rate cannot produce sufficient intensity to explain the COMPTEL data.Comment: 8 pages, 3 figures, accepted by A&
    corecore